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correlated patterns 

R Dert, V S DotsenkoS and B Tirozzi 
Dipanimento di Malematica, Universita’ di Roma ’La Sapienra’, Piazzale Aldo Mor0 2, 
Oil185 Roma, Italy 

Received 22 July 1991 

Abstract. Neural networks with symmetric couplings which have an intermediate form 
between the Hebb learning rule and the pseudo-inverse one, storing strongly correlated 
patterns, are studied. Signal-to-noise analysis is made and replica-symmetric thermody- 
namic calculations are performed. Both approaches show that both in the Hopfield model 
limit and in the pseudo-inverse model limit the maximal capacity of the order of 
(2plln(llp)-‘ (where p<< 1 is the average neural activity) can be achieved by appropriate 
adjustment of the threshold term of the Hamiltonian. 

1. Introduction 

In this paper we consider the problem of the maximal capacity of fully connected 
neural networks consisting of N ( N  + m) binary units with symmetric couplings. 

We consider the model in which the couplings depend on a continuous parameter 
A such that it could be considered as an intermediate between two well studied systems: 
the Hopfield model (see e.g. h i t  et al 1987) and the so-called pseudo-inverse model 
(Persona2 et a/ 1985, Kanter and Sompolinsky 1987). 

In the Hopfield model storing M = u N  uncorrelated patterns the couplings are 
defined as follows: 

where ( (7)  are the stored patterns. In the pseudo-invene model the couplings are 

where 
. .  

(3) 
1 c =-1 575:. 

P y  N i  
In the model under consideration the couplings are defined according to the rule: 

t On leave from Leipzig University, Federal Republic of Germany. 
$ On leave from Landau Institute for Theoretical Physics, Academy of Sciences of the USSR, Moscow, Russia. 
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For A = O  we recover the Hopfield model (I)  and in the limit A+m the structure 
of the J, tends to the pseudo-inverse one (2). For the case of uncorrelated patterns 
such a system has already been studied by Dotsenko er a/ (1991). It was shown that 
the maximal capacity of the model a. depends continuously on the parameter A, giving 
the value a,=O.14 of the Hopfield model (Amit et a/ 1987) for A = 0, and getting close 
to a, = 1 of the pseudo-inverse model (Kanter and Sompolinsky 1987) for A + 00. 

Here we address the question: what should be the structure of such a model and 
what is its maximal capacity in the case of strong correlations among the stored 
patterns? The Hopfield model storing strongly correlated patterns has been considered 
by Tsodyks and Feigelmann (1988) and Buhmann ef a/ (1989). They showed that the 
maximal capacity: 

predicted by Gardner (1988) is achieved if one considers the system consisting of 
binary units ut taking values 0 and 1 and described by the Hamiltonian: 

1 
H --I J ~ v ~ v ~  + U vi 

2 ,  i 

where 

Here the ($) are the patterns described by the probability distribution: 

and the parameter p<< 1 describes the average activity of the neurons: ((7)) = p .  

U in the Hamiltonian (6) such that U = uop, where uo= 1 - 6, and p<< 6 << 1. 

couplings in the form: 

It was shown that the result ( 5 )  is obtained if one adjusts the value of the threshold 

Straightforward generalization of the model (6), (7) will be done by taking the 

where t f ~ 7 f - p  and 

The random variables ff  are described by the distribution: 

P ( 0  =p6(5-(1 - p ) ) + ( l  - P M S + P )  (10) 

such that (([))=O and ((&)=p(l-p). In the limit A = O  we recover the Tsodyks- 
Feigelmann model (6), (7), and in the limit A + 00 we obtain the pseudo-inverse variant 
of the model storing strongly correlated patterns. 

In section 2 we make a signal-to-noise analysis for the model (6) with the couplings 
given by (8). It will be shown that by appropriate adjustment of the threshold U the 
maximal capacity of the model reaches Gardner's value ( 5 )  for any A including the 
pseudo-inverse limit A +CO. It will also be shown that the 'pure' pseudo-inverse model, 
when A =00 exactly, is a special point and in such a case a:"'"""'= 1. 
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In section 3 the results of section 2 will be confirmed by a direct replica-symmetric 
calculation of the free energy and the solutions of the corresponding saddle-point 
equations. In section 4 we discuss the obtained results. 

2. Signal-to-noise analysis 

‘lbe dynamics of the system Is described by the equations: 
- 

o , ( t + l ) = O  x zJo;(t)-u . (11) 

hi = J+I;( t )  - U. (12) 

( < # j  1 
The local field produced at site i by the spin configuration (v i )  is: 

if; 

In order to study the stability of the stored patterns one has to consider the local fields 
produced by these patterns. Consider the local field produced by e.g. the pattern 
number 1: 

These fields can be represented in the form: 

h f = s.$f - u t Ri. (14) 
Here E is the signal term, and random noise term Ri contains the contribution from 

Using the definition for the Jv, equation (S), one can compute (see the appendix) 
all the other patterns. 

the value of the signal and of the noise explicitly: 

(15) 
1 
A 

s = - x(1- ax)  

where 

A x =- Tr A(! + AA)-’ 

and A, is the Hopfield model interaction matrix: 

a 

The calculations (see the appendix) give: 

(19) 
I + a + l/(Ap(l -p) )  -J(l+ a + l / ( A p ( l  -p)))’-4a 

2a  X =  

The signal-to-noise ratio is then: 
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where 

For p<< 1 the maximum value of a will be shown to be large (-l/p). Using the 
explicit expression for x, equation (19), one can then easily show that the value of the 
factor ~ ( x )  for all values of A is restricted by 

l S q ( , y ) < l + l / a .  ( 2 2 )  
Therefore in the first order approximation in p one may take Q(X) = 1 and 

s 1  _-  _- 
U 6. 

The local field h :  produced by the pattem 1, equation (14), can be described by 
the Gaussian distribution: 

The pattern & can be said to be stored perfectly if, according to the dynamics ( I l ) ,  

7 ;  = O(ht) ( 2 5 )  

is fulfilled at all sites. Taking into account the distribution of the local fields (24) and 
all the distribution of the &, equation (lo), one can easily derive the total number of 
mistakes, the number of sites at which equation ( 2 5 )  is not fulfilled: 

the equation 

dhP(hlc= 1 - p ) + N ( l - p )  ( 2 6 )  

or 

E = Np erfc ( ( 1  - p ) s  - U ) + N( 1 - P I  erfc (7) p s t u  
U 

where 

erfc(x) = 2 j: dx exp(;). 

In order to minimize the amount of errors one can adjust the value of the threshold 
U which is the free parameter of the model. The appropriate value of U can be obtained 
from the equation 

which corresponds to the minimization of E with respect to U: 

The solution of this equation gives the optimal value of the threshold: 

u = s (i- p + ( z)’ In (7)) 
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Using this result, the total number of mistakes, equation (27), can be represented as: 

The pattern is getting unstable if & I N  reaches the value p. Assuming that p<< 1, the 
condition E /  N = p gives the limiting value for the signal-to-noise ratio: 

or, using (23), 

Therefore in the main order in p the maximal capacity of our model (6)-(8) does 
not depend on A and coincides with that of the Hopfield model storing strongly 
correlated patterns (Tsodyks and Feigelmann 1988). The optimal value of threshold 
(30) depends on A. From (15) and (19) (for a >> 1 and p<< I )  one gets: 

" -  ~ ( 1  +Ap) 
1 -  

(l+Aap)' 

Therefore the optimal value of the threshold at which the capacity may reach its 
maximal value (33) is: 

If A is not very large Apt< 1: 

In the limit A+m when the structure of the couplings (8) becomes close to the 
pseudo-inverse model the threshold is: 

Let us remark that, with such an optimal choice of the threshold, equation (34), 

Note, however, that if one takes A = m  exactly, then after the scaling Jv+ J J A ,  for 
the (I maximal (33) remains the same even in the limit A + m. 

the signal (15) and for the noise (16) one gets: 

( (1-a)  i f a s 1  
(6 i f a > i ,  

S =  

and U =  0. Since at (I z 1 there is no signal, such a 'pure' pseudo-inverse model can 
retrieve patterns only at a < 1 .  However for any A f 00 there is non-zero signal and 
there is non-zero noise and their ratio (23) remains finite for any a even if A-rm. 
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3. The mean field solution 

The model under consideration is described by the Hamiltonian: 

where the variables (U;) take two values v =0, 1, and the matrix f? is defined by: 

1 N  

N i  
i ' * , ,=-1S?fY 

P ( 5 )  =pS(5-(1 -p ) )+ ( l  - p ) S ( S + p ) .  

and the random variables (6:) are described by the probability distribution: 

The free energy is calculated using a standard replica trick: 

1 . ((Z"))-l= -iln F =  - - lm 
p "-0  n P 

where the replicated partition function is: 

. 

Introducing the field a; and @f one gets: 

."=I Da D@$exp( -ABC(@p)2- fC  ( a ; ) 2 )  
2 ip 2 * P  

1 I i i \  \ 

~ e x p ( , + ~  1 aL.$'(vf+iA@f)-p u + - x  CUP d x  '.PIP (, 2A ip 1 
where: 

a 1  -x =-Tr A(: + Ad)-' 
A N  

and d is the Hopfield model interaction matrix (18). ( In  (42) the term containing 
det(i + h e ) ,  which contributes an irrelevant constant into the free-energy, is omitted.) 
Following standard calculations (see e.g. Amit et a/ 1987 and Dotsenko el a/ 1991) 
one makes the average over all the patterns [p but one. We define the pattern which 
is expected to condense to .$f='- &, and correspondingly redefine a:=, = a'. 

Then introducing: 

(44) 
1 N  

N i  
Q,, = - (up + iA@p)( uT + ih9;) 

one obtains for the free-energy density: 

-PNnf (a ,  6, kt  
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(45) 

where the R,,, is the matrix conjugate to  (44) and ((. . .))< means the average over the 
pattern 5. 

Assuming the replica symmetry: 

Q P f Y  

R P f Y  

P ’ Y  
Q P ,  = [ Qo 

R,, = [ Ro 
P = Y  

and introducing: 

A = 1 + Asp( Ro - R)  

C = P ( Q o - Q )  

one finally gets: 

(47) 

(48) 

1 A - 1  AaR InA 
+-aRC+- Qo+-+- 

2 2A 2A 2p 

-i ((In [ 1 + exp( p ( n f + ~ ; ; i ~ r )  -pu +--- 
P 2AA 2A 

- 
where (. . .) means Gaussian averaging over z. 

In  the zero-temperature limit ( P  + 001, the corresponding saddle-point equations are: 

(uA-ng-(A - 1) /2A +( r~/2A),yA)~ 
CA= F ( e x p (  TOR - 2aR 

-Ap2(l-p)2(2A+p(l -p)A)a2 

(uA- af-(A - 1) /2A+(a /2A)~A)~ 
-2Aa E ( ( e x p (  - 2aR 

In what follows we consider the limit of strong correlations among patterns: p<< 1. 
Consider first the case when A is not too large (which includes the Hopfield model 

limit). 
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(a) Appcc 1. It can be shown a posferiori that in (51) and (52) the term Cp<< 1, and 
therefore it can be omitted. It can also be shown that in the RHS of (54) all but the 
first term can also be omitted. Therefore (50)-(54) can be reduced to: 

uA- a.$-(A - 1)/2h+ ( a /ZA\ )xA 
a =i A (6 erfc( JZaR (55) 

A = 1 +hap (56) 

uA- at-(A- 1)/2A+(a/ZA)xA 
RA2=2p2(erfc( J2aR 

The factor x (see (19)) in the limit Ap<< 1 is 

x=-. AP 
1 + Apa 

Together with (56) for A one gets: 

A-1 a 
2h 2A 

-- +-xA=O 

and therefore (55)-(57) (in the leading order in p) can be reduced to: 

uA-a 

Redefining 

1 

P 
a =pa, R = p 2 r  U =pus a = - a o  

and introducing 

one gets: 

1 uoA* - erf( z) + erf(x) z=- 6 Jerf(z)+erf(x)/p 

u,A2 1 
6 Jerf(z)+erf(x)/p' 

z=- 

If we choose the free parameter uo such that 

U 0 A 2 = 1 - 8  

where 

(57) 

(57) 
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then the solutions of (63), (64) exist until 

These solutions are: 

1 v=->>l  - 6.- 

or, in terms of the original variables: 

P 
l + l A a p  

a =  

P 3  R =  
(1  + lAap)2' 

(68) 

Note that according to the definition (see (42)) the variable a is connected with 
the overlaps: 

as follows: 

a = E ( i + l A & ) ; l m * .  
A' 

Therefore the overlap in the retrieval state m -  me=, i 

According to (as), (66) such retrieval states exist if we choose the threshold in the 
original Hamiltonian (37) as follows: 

U =  ( 1 - 8 )  
( l + A a p ) 2  

where p<c 8<< l / m .  Then the maximal value of a is 

(75) 

Inserting the solution (70). (71) in (53) and (54) one can easily check that pC<c 1 
and that all the terms but the first in the RHS of (54) are of higher order in p. Now 
consider ihe foiiowiiig i i i~e .  

(b) Ap>>l. Again it can be checked a posteriori that the first term in the RHS of 
(53) is much smaller than A, and all but the first term in (54) can be omitted. 
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Then (50)-(54) are reduced to: 

(77) 

(78) 

(79) 

(80) 

1 
A+pA 

uA- ac-(A - 1)/2A +(a/2A)xP 
m a = - ((5 erfc( 

p2Qo R =  
1 +(APIA)  

Aolp  

1 + ( W A )  
A = 1 +  

uA-a#-(A-l)/2A+(rr/2A)xA 
QoA2= 2((erfc( J2uR 

Assuming that 01 >> 1 one obtains from (79): 

A = Aap (81) 

The (19) for x gives 

(82) 
1 x=-.  
01 

Therefore the term 

A - 1  01 _- +-XA 
2A 2A 

in (77) and (80) can be omitted, and (77)-(80) are reduced to 

(83) 

(84) 
u A - a  

Introducing x = u A / m  and z = x - a l a ,  one again obtains (63),  (64) in which 

U ( l + l ~ ~ P ) 2 _ U A \ ' 0 1 $ ,  P ( 8 5 )  

Therefore the threshold should be chosen in the form: 

(86) 
1 

A2a2p U=- ( 1 - 6 )  

where p<< l / m ,  and then until 

a<a,.,= (87) 

one again obtains the retrieval solutions (68), (69). In terms of the original variables: 

(88) 

(89) 

1 

2~ W l l p )  

P R =- 
,42012 

1 
Aa2' 

0 5 -  
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For the overlap in the retrieval state one gets: 

Note that the results of the above thermodynamic solution for the maximal capacity 
and for the value of the threshold, equations (75) and (86), perfectly fit the predictions 
of the signal-to-noise analysis, equations (35) and (36). 

4. Conclusions 

We have considered the fully connected neural network defined by the symmetric 
coupling matrix: 

.? = JA(i t A A ) - ’  

where A is the Hopfield model coupling matrix. 
The results of the present and the previous studies (Dotsenko er a1 1991) show 

that such a model is very rich in its behaviour and theoretically very robust. 
For the model storing uncorrelated patterns the maximal capacity can be moved 

from a,=0.14 (at A =0) up to ac= 1 (for A+m). For the model storing strongly 
correlated patterns the maximal capacity can reach the Gardner limiting value 
(p In(l/p))-l for any value of the parameters A if the threshold term in the Hamiltonian 
is chosen in the optimal way. 

Although due to the replica symmetry breaking a new structure of the metastable 
states may appear in the system at finite A (Dotsenko and Tirozzi 1991) it does not 
seem to produce a strong effect on the retrieval properties of the model. 
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Appendix: the diagram technique 

A.1. Calculation of TrA(f+A&* 

Consider first the quantity 

G, = (i + AA);’ 

where 

and the random 5‘s are described by the distribution function (io). Expanding the 
RHS of (AI) one gets: 
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In terms of the diagrams (see Hertz et al 1991) it can be represented as 

G,=  i* -+ 

+ 

where the straight lines carry the space indices, while wavy lines carry the pattem 
indices and the additional factor ( - A / N ) .  Assuming self-averaging, one has to 
make all possible pairings of the 5's. The result can be represented as follows: 

. .  ,--. ,*-\, I--\ 

Gf=- + A + 

+ +... 

Here the dashed line causes all the indices of the vertices it connects to be equal 
and carry additional factor ((c2))=p(1-p). In the representation of (A4) one may 
omit all the diagrams with cross sections of the dashed lines since they are of higher 
order in 1/ N. 

The diagrams can be summed up in terms of a self-energy Z, corresponding to the 
Dyson equation: 

,,- - ., - = - + - ( A 9  

The solution of this equation is: 

1 G = -  
1 -z 

where: 

and the double wavy line is defined by the equation: 

The solution of this equation is 

99 ..&= 1 
1 + Ap( 1 - p) G I' 

and therefore 

. 
Equation (A6) for G reads: 
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Its solution is 

4 

+-+Ap(l-p) ( A W  
l - a -  

M - p )  G =  
2 

For the factor 

A 
a 

,y =-Tr A(? + AA)-' (A13) 

one easily gets: 

1 x =; ( 1  - G )  

which gives the result: 

1 1 2 4  
-P) 

AP(1-p)) ' M 1 - p ) .  ( ~ 1 5 )  
l + a +  - ( l - a -  

2 X =  

A.Z. Signal and noise 

The signal term in the local fields produced by the pattern number 1 can be represented 
as follows: 

x .I&= 1 (A-A.42+A2A3-...)U5~ ( A W  
i'j ; * j  

In terms of the diagram introduced above the lowest order term is 

Ynra rhn +ha f r a A  -".."- CI TI.- A: 
. I r a =  ,I.= L..LYID ' c p c " c 1 L L "  L l l r  .'ne" p'a.rrs,n, g;. ,U= "lag,"' 

.--. 
I / /  

\ 
\ 
\ 

-X- 

can be om-itted because it is of the order of 1/N, and the diagram 

,.-. 
L x  W19) 

is forbidden because j # i. 
Higher order corrections are included by 'dressing' the diagram (A17), i.e. by 

replacing the bare diagram elements with the double wavy line or the heavy straight 
!ins; Hnwever. in the higher ordm there will also contribute diagrams like; 

and the corresponding diagrams obtained by dressing (AZO). Therefore the signal, 



2856 R Der et al 

which is the sum of all contributions may be represented as: 

where 

@ = l  + 

Since (see (A13) and (A5)): ,--. - =-x (‘423) 

and ,--. 
1+ = G = l - a ~  (A24) 

one obtains the result: 

1 
A S=-,y( l -  .X) 

The noise term can be represented as follows: 

where the average ((. . .)) is over all the patterns hut the first one. 
In the lowest order one gets 

--)( ’ 1  

b A  
I -_ II I I l - N 2  1 1 (tr)’(~;)~(t;)’= ~ ’ ( 1  -p)3. ( ~ 2 7 )  A’ I I Y i i j  

Then the sum over all the diagrams of all order can be represented as 

where 

or 
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Taking into account (A29), (A30) and (A32) one finally gets the result: 

The additional factor p (  1 - l p )  comes from the dashed line to the right in the diagram 
(A28). 

References 

Buhmann J, Divko Rand Sehulten K 1989 Phys. Rev. A 39 2689 
Amit D I, Gutfreund H and Sompolinsky H 1987 Ann. Phys. 173 30 
Dotsenka V and Tirozzi B 1991 J. Phys. A: Molh. Gen. 24 5163 
Dotsenko V, Yarunin N and Doratheyev E 1991 J. Phys. A: Moth. Gen. 24 2419 
Gardner E 1988 J. Phys. A: Math. Gen. 21 257 
Hem J A, Krough A and Thorbergsson G I 1989 J. Phys. A: Malh. Gen. 22 2133 
Kanter I and Sompolinsky H 1987 Phys. Rev. A 35 380 
Personaz L, Guyon I and Dreyfus G 1985 J. Physique Lett. 46 L359 
Tsodyks M and Feigelmann M 1988 Europhys. Lett. 6 101 


